Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ploidy tug-of-war: Evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen.

Identifieur interne : 000132 ( Main/Exploration ); précédent : 000131; suivant : 000133

Ploidy tug-of-war: Evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen.

Auteurs : Aleeza C. Gerstein [États-Unis] ; Heekyung Lim [États-Unis] ; Judith Berman [États-Unis, Israël] ; Meleah A. Hickman [États-Unis, Géorgie (pays)]

Source :

RBID : pubmed:28195309

Descripteurs français

English descriptors

Abstract

Variation in baseline ploidy is seen throughout the tree of life, yet the factors that determine why one ploidy level is maintained over another remain poorly understood. Experimental evolution studies using asexual fungal microbes with manipulated ploidy levels intriguingly reveals a propensity to return to the historical baseline ploidy, a phenomenon that we term "ploidy drive." We evolved haploid, diploid, and polyploid strains of the human fungal pathogen Candida albicans under three different nutrient limitation environments to test whether these conditions, hypothesized to select for low ploidy levels, could counteract ploidy drive. Strains generally maintained or acquired smaller genome sizes (measured as total nuclear DNA through flow cytometry) in minimal medium and under phosphorus depletion compared to in a complete medium, while mostly maintained or acquired increased genome sizes under nitrogen depletion. Improvements in fitness often ran counter to changes in genome size; in a number of scenarios lines that maintained their original genome size often increased in fitness more than lines that converged toward diploidy (the baseline ploidy of C. albicans). Combined, this work demonstrates a role for both the environment and genotype in determination of the rate of ploidy drive, and highlights questions that remain about the force(s) that cause genome size variation.

DOI: 10.1111/evo.13205
PubMed: 28195309
PubMed Central: PMC7035954


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ploidy tug-of-war: Evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen.</title>
<author>
<name sortKey="Gerstein, Aleeza C" sort="Gerstein, Aleeza C" uniqKey="Gerstein A" first="Aleeza C" last="Gerstein">Aleeza C. Gerstein</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lim, Heekyung" sort="Lim, Heekyung" uniqKey="Lim H" first="Heekyung" last="Lim">Heekyung Lim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Berman, Judith" sort="Berman, Judith" uniqKey="Berman J" first="Judith" last="Berman">Judith Berman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hickman, Meleah A" sort="Hickman, Meleah A" uniqKey="Hickman M" first="Meleah A" last="Hickman">Meleah A. Hickman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia.</nlm:affiliation>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28195309</idno>
<idno type="pmid">28195309</idno>
<idno type="doi">10.1111/evo.13205</idno>
<idno type="pmc">PMC7035954</idno>
<idno type="wicri:Area/Main/Corpus">000145</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000145</idno>
<idno type="wicri:Area/Main/Curation">000145</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000145</idno>
<idno type="wicri:Area/Main/Exploration">000145</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ploidy tug-of-war: Evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen.</title>
<author>
<name sortKey="Gerstein, Aleeza C" sort="Gerstein, Aleeza C" uniqKey="Gerstein A" first="Aleeza C" last="Gerstein">Aleeza C. Gerstein</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lim, Heekyung" sort="Lim, Heekyung" uniqKey="Lim H" first="Heekyung" last="Lim">Heekyung Lim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Berman, Judith" sort="Berman, Judith" uniqKey="Berman J" first="Judith" last="Berman">Judith Berman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hickman, Meleah A" sort="Hickman, Meleah A" uniqKey="Hickman M" first="Meleah A" last="Hickman">Meleah A. Hickman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia.</nlm:affiliation>
<country xml:lang="fr">Géorgie (pays)</country>
<wicri:regionArea>Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta</wicri:regionArea>
<wicri:noRegion>Atlanta</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Evolution; international journal of organic evolution</title>
<idno type="eISSN">1558-5646</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Evolution (MeSH)</term>
<term>Candida albicans (genetics)</term>
<term>Candida albicans (physiology)</term>
<term>Diploidy (MeSH)</term>
<term>Gene-Environment Interaction (MeSH)</term>
<term>Genome Size (MeSH)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Haploidy (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Nutritional Physiological Phenomena (MeSH)</term>
<term>Polyploidy (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Candida albicans (génétique)</term>
<term>Candida albicans (physiologie)</term>
<term>Diploïdie (MeSH)</term>
<term>Génome fongique (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Haploïdie (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Interaction entre gènes et environnement (MeSH)</term>
<term>Phénomènes physiologiques nutritionnels (MeSH)</term>
<term>Polyploïdie (MeSH)</term>
<term>Taille du génome (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Evolution</term>
<term>Diploidy</term>
<term>Gene-Environment Interaction</term>
<term>Genome Size</term>
<term>Genome, Fungal</term>
<term>Genotype</term>
<term>Haploidy</term>
<term>Humans</term>
<term>Nutritional Physiological Phenomena</term>
<term>Polyploidy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Diploïdie</term>
<term>Génome fongique</term>
<term>Génotype</term>
<term>Haploïdie</term>
<term>Humains</term>
<term>Interaction entre gènes et environnement</term>
<term>Phénomènes physiologiques nutritionnels</term>
<term>Polyploïdie</term>
<term>Taille du génome</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Variation in baseline ploidy is seen throughout the tree of life, yet the factors that determine why one ploidy level is maintained over another remain poorly understood. Experimental evolution studies using asexual fungal microbes with manipulated ploidy levels intriguingly reveals a propensity to return to the historical baseline ploidy, a phenomenon that we term "ploidy drive." We evolved haploid, diploid, and polyploid strains of the human fungal pathogen Candida albicans under three different nutrient limitation environments to test whether these conditions, hypothesized to select for low ploidy levels, could counteract ploidy drive. Strains generally maintained or acquired smaller genome sizes (measured as total nuclear DNA through flow cytometry) in minimal medium and under phosphorus depletion compared to in a complete medium, while mostly maintained or acquired increased genome sizes under nitrogen depletion. Improvements in fitness often ran counter to changes in genome size; in a number of scenarios lines that maintained their original genome size often increased in fitness more than lines that converged toward diploidy (the baseline ploidy of C. albicans). Combined, this work demonstrates a role for both the environment and genotype in determination of the rate of ploidy drive, and highlights questions that remain about the force(s) that cause genome size variation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28195309</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1558-5646</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>71</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2017</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Evolution; international journal of organic evolution</Title>
<ISOAbbreviation>Evolution</ISOAbbreviation>
</Journal>
<ArticleTitle>Ploidy tug-of-war: Evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen.</ArticleTitle>
<Pagination>
<MedlinePgn>1025-1038</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/evo.13205</ELocationID>
<Abstract>
<AbstractText>Variation in baseline ploidy is seen throughout the tree of life, yet the factors that determine why one ploidy level is maintained over another remain poorly understood. Experimental evolution studies using asexual fungal microbes with manipulated ploidy levels intriguingly reveals a propensity to return to the historical baseline ploidy, a phenomenon that we term "ploidy drive." We evolved haploid, diploid, and polyploid strains of the human fungal pathogen Candida albicans under three different nutrient limitation environments to test whether these conditions, hypothesized to select for low ploidy levels, could counteract ploidy drive. Strains generally maintained or acquired smaller genome sizes (measured as total nuclear DNA through flow cytometry) in minimal medium and under phosphorus depletion compared to in a complete medium, while mostly maintained or acquired increased genome sizes under nitrogen depletion. Improvements in fitness often ran counter to changes in genome size; in a number of scenarios lines that maintained their original genome size often increased in fitness more than lines that converged toward diploidy (the baseline ploidy of C. albicans). Combined, this work demonstrates a role for both the environment and genotype in determination of the rate of ploidy drive, and highlights questions that remain about the force(s) that cause genome size variation.</AbstractText>
<CopyrightInformation>© 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gerstein</LastName>
<ForeName>Aleeza C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lim</LastName>
<ForeName>Heekyung</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Berman</LastName>
<ForeName>Judith</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology & Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hickman</LastName>
<ForeName>Meleah A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota, Minneapolis, Minnesota.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>Dryad</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.5061/dryad.s07cg</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>340087</GrantID>
<Acronym>ERC_</Acronym>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>R01 AI062427</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>CIHR</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Evolution</MedlineTA>
<NlmUniqueID>0373224</NlmUniqueID>
<ISSNLinking>0014-3820</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Evolution. 2017 Jul;71(7):1922</RefSource>
<PMID Version="1">28722135</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002176" MajorTopicYN="N">Candida albicans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004171" MajorTopicYN="Y">Diploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059647" MajorTopicYN="N">Gene-Environment Interaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059646" MajorTopicYN="N">Genome Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006238" MajorTopicYN="Y">Haploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009747" MajorTopicYN="Y">Nutritional Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="Y">Polyploidy</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Adaptation</Keyword>
<Keyword MajorTopicYN="Y">chromosomal evolution</Keyword>
<Keyword MajorTopicYN="Y">fitness</Keyword>
<Keyword MajorTopicYN="Y">mutations</Keyword>
<Keyword MajorTopicYN="Y">selection experimental</Keyword>
<Keyword MajorTopicYN="Y">selection natural </Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28195309</ArticleId>
<ArticleId IdType="doi">10.1111/evo.13205</ArticleId>
<ArticleId IdType="pmc">PMC7035954</ArticleId>
<ArticleId IdType="mid">EMS85827</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2014 Jun;24(6):963-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24732588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 May 15;290(1-2):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Sep 8;166(6):1585-1596.e22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27594428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2005 Jan 15;22(1):57-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15635674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Dec;12(12):1629-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24123269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2001 Jan 8;14(1):157-170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29280580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 1997 Oct;25(4):908-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9356806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Sep 22;2(9):e145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17002497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Apr 27;3(4):e68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17465683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2015 Jul;200(3):781-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25991822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2014 Aug 5;369(1648):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24958925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2014 Sep;70:68-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25038494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mikrobiologiia. 1989 Sep-Oct;58(5):769-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2699648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2015 Oct 13;6(5):e01340-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26463162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Med. 2014 Nov 20;6(11):100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1953 Feb;8(1):198-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13035047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2017 Feb;92(1):234-247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26467853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2004 Dec;42(12):5624-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15583292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1992 Sep;7(9):302-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21236040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Aug;8(8):1553-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24739623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 8;428(6983):617-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cancer. 2015 Oct;1(2):124-135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28741522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2013 Feb;110(2):152-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23188174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2016 Jul;103(7):1146-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27234228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2012 Jul 7;279(1738):2497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22492065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2013 Feb 23;9(1):20120614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23054913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Dec;4(12):e1000303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Apr;136(4):1475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8013920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Mar 18;12(3):e1001815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24642609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 May;67(5):1511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2000;34:401-437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Feb;25(2):75-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19796842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 May 15;22(10):2505-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12743044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Oct 8;526(7572):268-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26390151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Mar;9(3):e1003388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Nov 06;11(11):e1005635</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26545090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2014 Sep;141(18):3551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25142462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Mar 31;311(5769):1932-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16527929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Dec;10(12):1135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17922835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1974 Feb;76(2):327-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4595645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Mar 19;519(7543):349-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25731168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1984;198(2):179-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6394964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2005 Feb;6(2):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Feb 7;494(7435):55-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23364695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2011 Mar;24(3):531-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21159002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1982 Nov;152(2):893-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6752122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e26599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2009 Sep-Oct;100(5):571-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Jan;5(1):45-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14708009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2015 Nov;102(11):1753-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Géorgie (pays)</li>
<li>Israël</li>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Minnesota">
<name sortKey="Gerstein, Aleeza C" sort="Gerstein, Aleeza C" uniqKey="Gerstein A" first="Aleeza C" last="Gerstein">Aleeza C. Gerstein</name>
</region>
<name sortKey="Berman, Judith" sort="Berman, Judith" uniqKey="Berman J" first="Judith" last="Berman">Judith Berman</name>
<name sortKey="Berman, Judith" sort="Berman, Judith" uniqKey="Berman J" first="Judith" last="Berman">Judith Berman</name>
<name sortKey="Gerstein, Aleeza C" sort="Gerstein, Aleeza C" uniqKey="Gerstein A" first="Aleeza C" last="Gerstein">Aleeza C. Gerstein</name>
<name sortKey="Hickman, Meleah A" sort="Hickman, Meleah A" uniqKey="Hickman M" first="Meleah A" last="Hickman">Meleah A. Hickman</name>
<name sortKey="Lim, Heekyung" sort="Lim, Heekyung" uniqKey="Lim H" first="Heekyung" last="Lim">Heekyung Lim</name>
</country>
<country name="Israël">
<noRegion>
<name sortKey="Berman, Judith" sort="Berman, Judith" uniqKey="Berman J" first="Judith" last="Berman">Judith Berman</name>
</noRegion>
</country>
<country name="Géorgie (pays)">
<noRegion>
<name sortKey="Hickman, Meleah A" sort="Hickman, Meleah A" uniqKey="Hickman M" first="Meleah A" last="Hickman">Meleah A. Hickman</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000132 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000132 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28195309
   |texte=   Ploidy tug-of-war: Evolutionary and genetic environments influence the rate of ploidy drive in a human fungal pathogen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28195309" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020